Login / Signup

Dynamic Rearrangement and Directional Migration of Tubular Vacuoles are Required for the Asymmetric Division of the Arabidopsis Zygote.

Hikari MatsumotoYusuke KimataTakumi HigakiTetsuya HigashiyamaMinako Ueda
Published in: Plant & cell physiology (2021)
In most flowering plants, the asymmetric cell division of zygotes is the initial step that establishes the apical-basal axis. In the Arabidopsis zygote, vacuolar accumulation at the basal cell end is crucial to ensure zygotic division asymmetry. Despite the importance, it was unclear whether this polar vacuolar distribution was achieved by predominant biogenesis at the basal region or by directional movement after biogenesis. Here, we found that apical and basal vacuolar contents are dynamically exchanged via a tubular vacuolar network and the vacuoles gradually migrate toward the basal end. The mutant of a vacuolar membrane protein, SHOOT GRAVITROPISM2 (SGR2), failed to form tubular vacuoles, and the mutant of a putative vacuolar fusion factor, VESICLE TRANSPORT THROUGH INTERACTION WITH T-SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FUSION PROTEIN ATTACHMENT PROTEIN RECEPTORS (SNARES) 11 (VTI11), could not flexibly rearrange the vacuolar network. Both mutants failed to exchange the apical and basal vacuolar contents and to polarly migrate the vacuoles, resulting in a more symmetric division of zygotes. Additionally, we observed that in contrast to sgr2, the zygotic defects of vti11 were rescued by the pharmacological depletion of phosphatidylinositol 3-phosphate (PI3P), a distinct phospholipid in the vacuolar membrane. Thus, SGR2 and VTI11 have individual sites of action in zygotic vacuolar membrane processes. Further, a mutant of YODA (YDA) mitogen-activated protein kinase kinase kinase, a core component of the embryonic axis formation pathway, generated the proper vacuolar network; however, it failed to migrate the vacuoles toward the basal region, which suggests impaired directional cues. Overall, we conclude that SGR2- and VTI11-dependent vacuolar exchange and YDA-mediated directional migration are necessary to achieve polar vacuolar distribution in the zygote.
Keyphrases
  • transcription factor
  • single cell
  • protein kinase
  • stem cells
  • computed tomography
  • ionic liquid
  • mesenchymal stem cells
  • endothelial cells
  • binding protein