Login / Signup

Rapid Purification of Human Bispecific Antibodies via Selective Modulation of Protein A Binding.

Adam ZwolakCatherine N LeettolaSusan H TamDennis R GouletMehabaw G DerebeJose R PardinasSongmao ZhengRose DeckerEva EmmellMark L Chiu
Published in: Scientific reports (2017)
Methods to rapidly generate high quality bispecific antibodies (BsAb) having normal half-lives are critical for therapeutic programs. Here, we identify 3 mutations (T307P, L309Q, and Q311R or "TLQ") in the Fc region of human IgG1 which disrupt interaction with protein A while enhancing interaction with FcRn. The mutations are shown to incrementally alter the pH at which a mAb elutes from protein A affinity resin. A BsAb comprised of a TLQ mutant and a wild-type IgG1 can be efficiently separated from contaminating parental mAbs by differential protein A elution starting from either a) purified parental mAbs, b) in-supernatant crossed parental mAbs, or c) co-transfected mAbs. We show that the Q311R mutation confers enhanced FcRn interaction in vitro, and Abs harboring either the Q311R or TLQ mutations have serum half-lives as long as wild-type human IgG1. The mutant Abs have normal thermal stability and Fcγ receptor interactions. Together, the results lead to a method for high-throughput generation of BsAbs suitable for in vivo studies.
Keyphrases
  • wild type
  • endothelial cells
  • high throughput
  • binding protein
  • protein protein
  • induced pluripotent stem cells
  • amino acid
  • small molecule
  • mass spectrometry
  • recombinant human