In silico study revealed major conserve architectures and novel features of pyrabactin binding to Oryza sativa ABA receptors compare to the Arabidopsis thaliana.
Manish K GuptaVishakha SharmaSangram Keshari LenkaViswanathan ChinnusamyPublished in: Journal of biomolecular structure & dynamics (2019)
Enhancing water use efficiency (WUE) of crops in irrigated agriculture and drought tolerance in rain-fed agriculture is the major goal for sustaining and enhancing agricultural productivity in the future. The phytohormone abscisic acid (ABA) signaling pathway is a major target for the agronomic management of WUE and genetic improvement of drought tolerance in crops. The START domain proteins PYRABACTIN RESISTANCE1 (PYR1)/PYR1-like (PYL)/Regulatory Components of ABA Receptors (RCARs) of the model plant Arabidopsis thaliana have been characterized as bona fide ABA receptors (ABARs). ABA signaling pathway can be activated or repressed by using specific agonist and antagonist against ABAR and therefore, can be used to control ABA-mediated physiological changes in plants. In the present work, we have reported the 3 D structure models of three ABARs (OsPYL1-3) from drought-tolerant Indica rice N22 (Oryza sativa L. sp. Indica cv N22) in apo- and ligand-bound conformations developed using comparative modeling techniques. Subsequently, these models were used in docking study to investigate the binding mode of known ABAR agonists and antagonists. Further, molecular dynamics studies on the selected systems verified the residues involved in protein-ligand interactions. The study identified the important ligand-binding features for the future development of specific agonists/antagonists to modulate the ABA activity in O. sativa and provides in silico models for designing and virtual screening to identify potent ABA receptor ligands.Communicated by Ramaswamy H. Sarma.