Login / Signup

Coupling spectral imaging and laboratory analyses to digitally map sediment parameters and stratigraphic layers in Yeha, Ethiopia.

Vincent HaburajSarah JappIris GerlachPhilipp HoelzmannBrigitta Schütt
Published in: PloS one (2020)
Quantitative analyses of soil and sediment samples are often used to complement stratigraphic interpretations in archaeological and geoscientific research. The outcome of such analyses often is confined to small parts of the examined profiles as only a limited number of samples can be extracted and processed. Recent laboratory studies show that such selectively measured soil and sediment characteristics can be spatially extrapolated using spectral image data, resulting in reliable maps of a variety of parameters. However, on-site usage of this method has not been examined. We therefore explore, whether image data (RGB data and visible and near infrared hyperspectral data), acquired under regular fieldwork conditions during an archaeological excavation, in combination with a sampling strategy that is close to common practice, can be used to produce maps of soil organic matter, hematite, calcite, several weathering indices and grain size characteristics throughout complex archaeological profiles. We examine two profiles from an archaeological trench in Yeha (Tigray, Ethiopia). Our findings show a promising performance of RGB data and its derivative CIELAB as well as hyperspectral data for the prediction of parameters via random forest regression. By including two individual profiles we are able to assess the accuracy and reproducibility of our results, and illustrate the advantages and drawbacks of a higher spectral resolution and the necessary additional effort during fieldwork. The produced maps of the parameters examined allow us to critically reflect on the stratigraphic interpretation and offer a more objective basis for layer delineation in general. Our study therefore promotes more transparent and reproducible documentation for often destructive archaeological fieldwork.
Keyphrases
  • electronic health record
  • big data
  • heavy metals
  • primary care
  • deep learning
  • artificial intelligence
  • magnetic resonance
  • high density
  • fluorescence imaging
  • dual energy
  • advance care planning