Thermoplastic Starch Composites Reinforced with Functionalized POSS: Fabrication, Characterization, and Evolution of Mechanical, Thermal and Biological Activities.
Raja VenkatesanRamkumar VanarajKrishnapandi AlagumalaiAsrafali Shakila ParveenChaitany Jayprakash RaoraneVinit RajSeong-Cheol KimPublished in: Antibiotics (Basel, Switzerland) (2022)
Rapid advancements in materials that offer the appropriate mechanical strength, barrier, and antimicrobial activity for food packaging are still confronted with significant challenges. In this study, a modest, environmentally friendly method was used to synthesize functionalized octakis(3-chloropropyl)octasilsesquioxane [fn-POSS] nanofiller. Composite films compared to the neat thermoplastic starch (TS) film, show improved thermal and mechanical properties. Tensile strength results improved from 7.8 MPa to 28.1 MPa (TS + 5.0 wt.% fn-POSS) with fn-POSS loading (neat TS). The barrier characteristics of TS/fn-POSS composites were increased by fn-POSS by offering penetrant molecules with a twisting pathway. Also, the rates of O 2 and H 2 O transmission were decreased by 50.0 cc/m 2 /day and 48.1 g/m 2 /day in TS/fn-POSS composites. Based on an examination of its antimicrobial activity, the fn-POSS blended TS (TSP-5.0) film exhibits a favorable zone of inhibition against the bacterial pathogenic Staphylococcus aureus and Escherichia coli . The TS/fn-POSS (TSP-5.0) film lost 78.4% of its weight after 28 days in natural soil. New plastic materials used for packaging, especially food packaging, are typically not biodegradable, so the TS composite with 5.0 wt.% fn-POSS is therefore of definite interest. The incorporation of fn-POSS with TS composites can improve their characteristics, boost the use of nanoparticles in food packaging, and promote studies on biodegradable composites.