Login / Signup

Diffuse Layer Effect on Electron-Transfer Kinetics Measured by Scanning Electrochemical Microscopy (SECM).

Je Hyun BaeYun YuMichael V Mirkin
Published in: The journal of physical chemistry letters (2017)
Recent theoretical and experimental studies revealed strong effects of the electrical double layer (EDL) on mass transfer at nanometer-sized electrodes and in electrochemical nanogaps. Although the EDL effect is much stronger in weakly supported media, it can significantly influence the kinetics of electron-transfer processes involving multicharged ionic redox species, even at high concentrations of supporting electrolyte. We measured the kinetics of Fe(CN)64- oxidation in 1 M KCl solution at the Pt nanoelectrode used as a tip in the scanning electrochemical microscope. The apparent standard rate constant values extracted from tip voltammograms without double-layer correction increased markedly with the decreasing separation distance between the tip and substrate electrodes. The same steady-state voltammograms were fitted to the theory including the EDL effect and yielded the rate constant essentially independent of the separation distance.
Keyphrases