Modified Meta Heuristic BAT with ML Classifiers for Detection of Autism Spectrum Disorder.
Mohemmed ShaAbdullah AlqahtaniShtwai AlsubaiAshit Kumar DuttaPublished in: Biomolecules (2023)
ASD (autism spectrum disorder) is a complex developmental and neurological disorder that impacts the social life of the affected person by disturbing their capability for interaction and communication. As it is a behavioural disorder, early treatment will improve the quality of life of ASD patients. Traditional screening is carried out with behavioural assessment through trained physicians, which is expensive and time-consuming. To resolve the issue, several conventional methods strive to achieve an effective ASD identification system, but are limited by handling large data sets, accuracy, and speed. Therefore, the proposed identification system employed the MBA (modified bat) algorithm based on ANN (artificial neural networks), modified ANN (modified artificial neural networks), DT (decision tree), and KNN (k-nearest neighbours) for the classification of ASD in children and adolescents. A BA (bat algorithm) is utilised for the automatic zooming capability, which improves the system's efficacy by excellently finding the solutions in the identification system. Conversely, BA is effective in the identification, it still has certain drawbacks like speed, accuracy, and falls into local extremum. Therefore, the proposed identification system modifies the BA optimisation with random perturbation of trends and optimal orientation. The dataset utilised in the respective model is the Q-chat-10 dataset. This dataset contains data of four stages of age groups such as toddlers, children, adolescents, and adults. To analyse the quality of the dataset, dataset evaluation mechanism, such as the Chi-Squared Statistic and p -value, are used in the respective research. The evaluation signifies the relation of the dataset with respect to the proposed model. Further, the performance of the proposed detection system is examined with certain performance metrics to calculate its efficiency. The outcome revealed that the modified ANN classifier model attained an accuracy of 1.00, ensuring improved performance when compared with other state-of-the-art methods. Thus, the proposed model was intended to assist physicians and researchers in enhancing the diagnosis of ASD to improve the standard of life of ASD patients.
Keyphrases
- autism spectrum disorder
- neural network
- attention deficit hyperactivity disorder
- intellectual disability
- end stage renal disease
- machine learning
- newly diagnosed
- young adults
- deep learning
- primary care
- ejection fraction
- bioinformatics analysis
- chronic kidney disease
- peritoneal dialysis
- big data
- sensitive detection
- high intensity
- body composition
- patient reported outcomes
- quantum dots