Strategy to Simultaneously Manipulate Direct Zn Nucleation and Hydrogen Evolution via Surface Modifier Hydrolysis for High-Performance Zn-Ion Batteries.
Min Ji YeoSeul Gi LeeSyryll OlidanJihoon KimKuk Young ChoSukeun YoonPublished in: ACS applied materials & interfaces (2024)
The demand for safer batteries is growing rapidly due to fire incidents in electronic devices that use Li-ion batteries. Zn-ion batteries are among the most promising candidates to replace Li-ion batteries because they use a water-based electrolyte and are not explosive. However, Zn-ion batteries suffer from persistent corrosion and dendritic crystal formation during the charge-discharge process, which decrease their reversibility and hinder their commercial usage. Extensive research has been conducted to address these issues, but there are significant limitations due to high process and time costs. In this study, the modulation of the Zn-electrolyte interface to overcome these challenges is attempted using acetamide-derived thioacetamide (TAA), a surface modifier used in electroplating. TAA undergoes hydrolysis in an aqueous solution and produces weakly acidic byproducts and sulfide ions. These species are adsorbed onto the Zn metal surface, which induces uniform Zn 2+ deposition, facilitates the formation of a stable interfacial layer, and inhibits side reactions due to the reduced water activity. Consequently, the symmetric cell with TAA achieves a low polarization of 50 mV and stable cycling for 700 h at 1 mA cm -2 . Additionally, a Zn|V 6 O 13 full cell exhibits electrochemical reversibility, maintaining a capacity retention of 64% over 300 cycles. Therefore, this study offers useful insights into the development of a simple manufacturing process to ensure the competitiveness of Zn-ion batteries for practical applications using functional electrolyte additives.