A two-step actin polymerization mechanism drives dendrite branching.
Rebecca ShiDaniel A KramerBaoyu ChenKang ShenPublished in: Neural development (2021)
We propose that regulators of branched and linear F-actin cooperate to establish dendritic branches. By combining our work with existing literature, we propose that the dendrite guidance receptor DMA-1 recruits the WRC, which polymerizes branched F-actin to generate "swellings" on a mother dendrite. Then, WRC recruits the actin elongation factor UNC-34/Ena/VASP to initiate growth of a new dendritic branch from the swelling, with the help of the actin-binding protein UNC-115/abLIM. Extension of existing dendrites also proceeds via swelling formation at the dendrite tip followed by UNC-34-mediated outgrowth. Following dendrite initiation and extension, the stabilization of branches by guidance receptors further recruits WRC, resulting in an iterative process to build a complex dendritic arbor.