Login / Signup

Single Layer Centrifugation Improves the Quality of Fresh Donkey Semen and Modifies the Sperm Ability to Interact with Polymorphonuclear Neutrophils.

Marion PapasJaime CatalánSandra RecueroJane Margaret MorrellMichael L DustinJordi Miro
Published in: Animals : an open access journal from MDPI (2020)
This study sought to determine whether single layer centrifugation (SLC) of fresh donkey semen with Equicoll has any impact on sperm quality parameters and on the modulation of endometrial reaction following semen deposition using an in vitro model. Seventeen ejaculates from five jackasses were obtained using an artificial vagina and diluted in a skim-milk extender. Samples were either selected through SLC (Equicoll) or non-treated (control). Two experiments were performed. The first one consisted of incubating selected or non-selected spermatozoa at 38 °C for 180 min. Integrity and lipid disorder of sperm plasma membrane, mitochondrial membrane potential, and intracellular levels of calcium and reactive oxygen species were evaluated at 0, 60, 120, and 180 min. In the second experiment, polymorphonuclear neutrophils (PMN) isolated from jennies blood were mixed with selected and unselected spermatozoa. Interaction between spermatozoa and PMN was evaluated after 0, 60, 120, and 180 min of co-incubation at 38 °C. SLC-selection increased the proportions of spermatozoa with an intact plasma membrane and low lipid disorder, of spermatozoa with high mitochondrial membrane potential and with high calcium levels, and of progressively motile spermatozoa. In addition, selection through SLC augmented the proportion of phagocytosed spermatozoa, which supported the modulating role of seminal plasma proteins on sperm-PMN interaction. In conclusion, SLC of fresh donkey semen increases the proportions of functionally intact and motile spermatozoa, and appears to remove the seminal plasma proteins that inhibit sperm-PMN binding.
Keyphrases
  • reactive oxygen species
  • oxidative stress
  • signaling pathway
  • quality improvement
  • climate change
  • dna binding