Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity.
Bingbing ChangQianhe XuHairui GuoMiao ZhongRuipeng ShenLanning ZhaoJintao ZhaoTao MaYajun ChuJunmin ZhangJian-Guo FangPublished in: Journal of medicinal chemistry (2023)
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.