Neuromuscular and biomechanical functions subserving finger dexterity in musicians.
Yudai KimotoTakanori OkuShinichi FuruyaPublished in: Scientific reports (2019)
Exceptional finger dexterity enables skillful motor actions such as those required for musical performance. However, it has been not known whether and in what manner neuromuscular or biomechanical features of the fingers subserve the dexterity. We aimed to identify the features firstly differentiating the finger dexterity between trained and untrained individuals and secondly accounting for the individual differences in the dexterity across trained individuals. To this aim, two studies were conducted. The first study compared the finger dexterity and several neuromuscular and biomechanical characteristics of the fingers between pianists and non-musicians. As a measure of the dexterity, we used the maximum rate of repetitive finger movements. The results showed no differences in any biomechanical constraints of the fingers between the two groups (i.e. anatomical connectivity between the fingers and range of motion). However, the pianists exhibited faster finger movements and more independent control of movements between the fingers. These observations indicate expertise-dependent enhancement of the finger dexterity and reduction of neuromuscular constraints on movement independence between the fingers. The second study assessed individual differences in the finger dexterity between trained pianists. A penalized regression determined an association of the maximum movement speed of the fingers with both muscular strength and biomechanical characteristics of the fingers, but not with neuromuscular constraints of the fingers. None of these features covaried with measures of early and deliberate piano practice. These findings indicate that distinct biological factors of finger motor dexterity differentiate between the effects of piano practicing and individual differences across skilled pianists.