Morpho-functional variation and response pattern of microglia through rodent ontogeny showing infant microglia as stable and adaptive than matured.
Anirban GhoshPayel GhoshIshani DebSandip BandyopadhyayPublished in: Brain and behavior (2021)
Microglia, myelo-monocytic lineage cells, that enter in the developing brain at early embryonic stages and integrate in CNS, are involved in almost all neuroinflammatory conditions. We studied how microglia change their responses through the development and maturation of brain in normal physiological conditions using an ex situ model to delineate their age-specific morpho-functional responsiveness. Rapidly isolated microglia from different age-matched rats were characterized with Iba1+ /CD11b/c+ /MHCclassII+ , cultured, studied for cell-cycle/proliferative potency, ROS generation and phagocytosis, viability and morphological analysis induced with GMCSF, MCSF, IL-4, IL-6, IL-10, and IFN-γ. The study showed marked differences in cellular properties, stability, and viability of microglia through ontogeny with specific patterns in their studied functions which were coherent with their in situ morpho-functional attributes. Phagocytic behavior showed a notable shift from ROS independence to dependence toward maturation. Perinatal microglia were found persistent in ex situ environment and neonatal microglia qualified as the most potent and versatile responders for morpho-functional variations under cytokine induced conditions. The study identified that microglia from infants were the most stable, adaptive, and better responders, which can perform as an ex situ model system to study microglial biology.