Login / Signup

LygA retention on the surface of Listeria monocytogenes via its interaction with wall teichoic acid modulates bacterial homeostasis and virulence.

Hao YaoGuo LiXianglian XiongFanxin JinSirui LiXinyu XieDan ZhongRenling ZhangFanzeng MengYuelan YinXin'an Jiao
Published in: PLoS pathogens (2023)
Wall teichoic acid (WTA) is the abundant cell wall-associated glycopolymer in Gram-positive bacteria, playing crucial roles in surface proteins retention, bacterial homeostasis, and virulence. Hypervirulent serovar (SV) 4h Listeria monocytogenes is a newly designated serotype with only galactosylated (Gal) type II WTA. Although the surface association of some proteins relies on the WTA glycosylation, the nature and function of the noncovalent interactions between cell wall-associated proteins and WTA are less known. In this study, we found Gal-WTA plays a key role in modulating the novel glycine-tryptophan (GW) domain-containing autolysin protein LygA through direct interactions. An SV 4h strain deficient in WTA galactosylation (XYSNΔgalT) showed a dramatic reduction of LygA on the cell surface, significantly decreasing the autolytic activity, impairing the bacterial colonization in colon and brain. Notably, we demonstrated LygA binds to Gal-WTA with high affinity through the GW domain and that the extent of binding increases with the number of GW domains. Moreover, we confirmed the direct Gal-dependent binding of the GW protein Auto from the type I WTA strain, which has no interaction with l-rhamnosylated WTA, indicating that the complexity of both WTA and GW proteins can affect the coordination patterns. Altogether, our findings suggest that both the glycosylation patterns of WTA and a fixed numbers of GW domains are closely associated with the retention of LygA on the cell surface, which facilitates L. monocytogenes infection by promoting bacteria colonization in intestine and brain.
Keyphrases