Login / Signup

AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases.

Jordan DouglasHaissi CuiJohn J PeronaOscar Vargas-RodriguezHenna TyynismaaClaudia Alvarez CarreñoJiqiang LingLluís Ribas de PouplanaXiang-Lei YangMichael IbbaHubert BeckerFrédéric FischerMarie SisslerCharles W CarterPeter R Wills
Published in: IUBMB life (2024)
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Keyphrases
  • amino acid
  • social media
  • health information
  • healthcare
  • binding protein
  • oxidative stress
  • quality improvement
  • heat shock