Login / Signup

Bio-derived yellow porous TiO2: the lithiation induced activation of an oxygen-vacancy dominated TiO2 lattice evoking a large boost in lithium storage performance.

Lanju SunWei LiuRuitao WuYongpeng CuiYuan ZhangYongxu DuShuai LiuShuang LiuHuanlei Wang
Published in: Nanoscale (2019)
Oxygen deficient TiO2 has attracted extensive attention owning to its narrow bandgap and high electrical conductivity. In this work, novel yellow TiO2 with hierarchically porous architecture is fabricated by a facile pyrolysis method in air via a biomass template. The obtained yellow TiO2 exhibits interesting lithiation induced activation during cycling, which gives rise to a phase change from poorly crystallized TiO2 to an amorphous phase, accompanied by a colour change from yellow to black. In contrast to the intercalation mechanism reported in most of the literature on the TiO2 anode of LIBs, notably, the reversible redox reaction between Ti3+ and metal Ti can be verified in this case, demonstrating the novel conversion reaction mechanism of the TiO2 electrode. Based on this, the yellow porous TiO2 delivers enhanced electrochemical performance as an anode for LIBs with a superior capacity of 480 mA h g-1 at 5 A g-1 and a high capacity of 206 mA h g-1 at 10 A g-1 after 8000 cycles.
Keyphrases