Login / Signup

Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence.

William W DriscollMichael Travisano
Published in: Nature communications (2017)
The evolution of multicellular life requires cooperation among cells, which can be undermined by intra-group selection for selfishness. Theory predicts that selection to avoid non-cooperators limits social interactions among non-relatives, yet previous evolution experiments suggest that intra-group conflict is an outcome, rather than a driver, of incipient multicellular life cycles. Here we report the evolution of multicellularity via two distinct mechanisms of group formation in the unicellular budding yeast Kluyveromyces lactis. Cells remain permanently attached following mitosis, giving rise to clonal clusters (staying together); clusters then reversibly assemble into social groups (coming together). Coming together amplifies the benefits of multicellularity and allows social clusters to collectively outperform solitary clusters. However, cooperation among non-relatives also permits fast-growing unicellular lineages to 'free-ride' during selection for increased size. Cooperation and competition for the benefits of multicellularity promote the stable coexistence of unicellular and multicellular genotypes, underscoring the importance of social and ecological context during the transition to multicellularity.
Keyphrases
  • induced apoptosis
  • healthcare
  • mental health
  • cell cycle arrest
  • endoplasmic reticulum stress
  • signaling pathway
  • cancer therapy
  • cell death
  • risk assessment
  • drug delivery
  • saccharomyces cerevisiae
  • rare case