Login / Signup

A multilayered sheet-type device capable of sustained drug release and deployment control.

Yuto SatoNobuhiro NagaiToshiaki AbeHirokazu Kaji
Published in: Biomedical microdevices (2019)
Minimally invasive delivery of a sustained drug release device to the body is a promising approach for treating chronic conditions such as retinal diseases. Herein, we describe a sheet-type device capable of sustained drug release and deployment control after being applied to the body through a small opened hole via a syringe-type injector. Such device consists of a four-layered structure of thin photopolymerized sheets, which are in turn made of different ratios of a mixture of polyethylene glycol dimethacrylate (PEGDM) and triethylene glycol dimethacrylate (TEGDM). A layer containing a model drug, i.e., fluorescein, was sandwiched between a controlled release and guard layer to achieve sustained unidirectional drug release. A deployment layer was then attached onto the guard layer to control the curvature of the device following deployment. The sheet-type device was sufficiently flexible to be rolled up and could be inserted into a syringe-type injector. When the device was injected into the subconjunctival space of a rabbit eye through a small opened hole, it unfolded to fit the eyeball curvature. Moreover, homogenates of the choroid/retinal pigment epithelium (RPE) as well as the retina exhibited fluorescence during 4 weeks after implantation, confirming that the drug could be delivered to the retina by using the device. This developed sheet-type device offers the possibility of achieving minimally invasive transplantation into diseased tissues and organs, and could provide improved therapeutic modalities as well as reduce possible side effects.
Keyphrases
  • drug release
  • drug delivery
  • minimally invasive
  • gene expression
  • diabetic retinopathy
  • stem cells
  • mesenchymal stem cells
  • endoplasmic reticulum stress
  • gold nanoparticles
  • optic nerve
  • drug induced
  • preterm birth