CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-κB-NLRP3 inflammasome signaling pathway in macrophages.
Ying LiMeng-Ya JiangJing-Yu ChenZhou-Wei XuJia-Wei ZhangTao LiLing-Ling ZhangWei WeiPublished in: IUBMB life (2021)
Deficiency of G protein-coupled receptor kinase 2 (GRK2) was found to protect mice from dextran sulfate sodium (DSS)-induced colitis. Paeoniflorin-6'-O-benzene sulfonate (CP-25) has been shown to exert anti-inflammatory immune regulatory effects in animal models of inflammatory autoimmune disease. This study aimed to investigate the of GRK2 in the pathogenesis of ulcerative colitis (UC) and its effects on macrophage polarization, macrophage subtype regulation of intestinal barrier function, and therapeutic effects of CP-25 in mice with DSS-induced colitis. We found imbalanced macrophage polarization, intestinal barrier dysfunction, and abnormal activation of GRK2 and TLR4-NF-κB-NLRP3 inflammasome signaling pathway in the colonic mucosa of patients with UC. CP-25, restored the damaged intestinal barrier function by inhibiting the transmembrane region of GRK2 in macrophages stimulated by lipopolysaccharides. CP-25 exerted therapeutic effects by ameliorating clinical manifestation, regulating macrophage polarization, and restoring abnormally activated TLR4-NF-κB-NLRP3 inflammasome signaling pathway by inhibiting GRK2. These data suggest the pathogenesis of UC may be related to the imbalance of macrophage polarization, which leads to abnormal activation of TLR4-NF-κB-NLRP3 inflammasome signaling pathway mediated by GRK2 and destruction of the intestinal mucosal barrier. CP-25 confers therapeutic effects on colitis by inhibiting GRK2 translocation to induce the downregulation of TLR4-NF-κB-NLRP3 inflammasome signaling in macrophages.
Keyphrases
- nlrp inflammasome
- signaling pathway
- pi k akt
- toll like receptor
- inflammatory response
- ulcerative colitis
- induced apoptosis
- epithelial mesenchymal transition
- immune response
- nuclear factor
- oxidative stress
- lps induced
- high fat diet induced
- type diabetes
- adipose tissue
- electronic health record
- machine learning
- cell proliferation
- drug induced