Login / Signup

Simultaneous small-sample comparisons in longitudinal or multi-endpoint trials using multiple marginal models.

Philip PallmannChristian RitzLudwig A Hothorn
Published in: Statistics in medicine (2018)
Simultaneous inference in longitudinal, repeated-measures, and multi-endpoint designs can be onerous, especially when trying to find a reasonable joint model from which the interesting effects and covariances are estimated. A novel statistical approach known as multiple marginal models greatly simplifies the modelling process: the core idea is to "marginalise" the problem and fit multiple small models to different portions of the data, and then estimate the overall covariance matrix in a subsequent, separate step. Using these estimates guarantees strong control of the family-wise error rate, however only asymptotically. In this paper, we show how to make the approach also applicable to small-sample data problems. Specifically, we discuss the computation of adjusted P values and simultaneous confidence bounds for comparisons of randomised treatment groups as well as for levels of a nonrandomised factor such as multiple endpoints, repeated measures, or a series of points in time or space. We illustrate the practical use of the method with a data example.
Keyphrases
  • electronic health record
  • big data
  • clinical trial
  • single cell
  • study protocol
  • finite element analysis