Triphenylamine substituted copper and zinc phthalocyanines as alternative hole-transporting materials for solution-processed perovskite solar cells.
Gizem Gümüşgöz ÇelikAyşe Nur ŞahinFarrokh LafziNurullah SaracogluAhmet AltındalAyşe Gül GürekDevrim AtillaPublished in: Dalton transactions (Cambridge, England : 2003) (2022)
In the present study, new peripheral substituted Zn(II) and Cu(II) phthalocyanine derivatives (p-ZnPc and p-CuPc) bearing bulky aromatic triphenylamine groups were synthesized as alternative hole-transporting materials (HTMs). The structures of the new phthalocyanine derivatives (p-ZnPc and p-CuPc) were illuminated by various spectroscopic techniques such as mass spectrometry and 1 H, and 13 C-NMR. After structural analysis, their photophysical properties in solution and the solid phase were examined by UV-Vis absorption and fluorescence spectroscopy. Using p-ZnPc and p-CuPc as HTMs, highly stable perovskite-based solar cells with the structure of FTO/SnO 2 /perovskite/p-ZnPc and p-CuPc/Ag have been developed and characterized. It was observed that our devices with p-ZnPc as the HTM maintain over 93% of the initial performance for more than 960 h under atmospheric conditions (22-27 °C) with 35-45% relative humidity. In addition, some strategies such as using various methylammonium iodide (MAI) and lead iodide (PbI 2 ) blend ratios between 1 : 0.4 and 1 : 1.8 were employed to test the effect of the blend ratios on the long term stability of the perovskite-based solar cells. Our findings demonstrated that the spin-coated p-ZnPc based HTM demonstrated competitive power conversion efficiency and exhibited superior stability without encapsulation compared to commonly used HTMs.
Keyphrases
- solar cells
- perovskite solar cells
- high resolution
- molecular docking
- mass spectrometry
- single molecule
- solid state
- photodynamic therapy
- room temperature
- oxide nanoparticles
- magnetic resonance
- quantum dots
- liquid chromatography
- heavy metals
- gold nanoparticles
- high performance liquid chromatography
- amino acid
- air pollution
- reduced graphene oxide
- simultaneous determination