Login / Signup

Nanoscale Chemical Probing of Metal-Supported Ultrathin Ferrous Oxide via Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy.

Dairong LiuLinfei LiNan Jiang
Published in: Chemical & biomedical imaging (2024)
Metal-supported ultrathin ferrous oxide (FeO) has attracted immense interest in academia and industry due to its widespread applications in heterogeneous catalysis. However, chemical insight into the local structural characteristics of FeO, despite its critical importance in elucidating structure-property relationships, remains elusive. In this work, we report the nanoscale chemical probing of gold (Au)-supported ultrathin FeO via ultrahigh-vacuum tip-enhanced Raman spectroscopy (UHV-TERS) and scanning tunneling microscopy (STM). For comparative analysis, single-crystal Au(111) and Au(100) substrates are used to tune the interfacial properties of FeO. Although STM images show distinctly different moiré superstructures on FeO nanoislands on Au(111) and Au(100), TERS demonstrates the same chemical nature of FeO by comparable vibrational features. In addition, combined TERS and STM measurements identify a unique wrinkled FeO structure on Au(100), which is correlated to the reassembly of the intrinsic Au(100) surface reconstruction due to FeO deposition. Beyond revealing the morphologies of ultrathin FeO on Au substrates, our study provides a thorough understanding of the local interfacial properties and interactions of FeO on Au, which could shed light on the rational design of metal-supported FeO catalysts. Furthermore, this work demonstrates the promising utility of combined TERS and STM in chemically probing the structural properties of metal-supported ultrathin oxides on the nanoscale.
Keyphrases