Login / Signup

Highly Sensitive Carbon Monoxide Sensor Element with Wide-Range Humidity Resistance by Loading Pd Nanoparticles on SnO 2 Surface.

Koichi SuematsuAkihito UchiyamaKen WatanabeKengo Shimanoe
Published in: Sensors (Basel, Switzerland) (2022)
To develop a highly sensitive carbon monoxide (CO) sensor with a wide range of humidity resistance, we focused on the Pd loading method on SnO 2 nanoparticles and the thickness of the sensing layer. The Pd nanoparticles were loaded on the SnO 2 surface using the surface immobilization method (SI-Pd/SnO 2 ) and the colloidal protection method (CP-Pd/SnO 2 ). The XPS analysis indicated that the Pd nanoparticles were a composite of PdO and Pd, regardless of the loading method. According to the evaluation of the electrical properties at 350 °C, the CO response in a humid atmosphere and the resistance toward humidity change using CP-Pd/SnO 2 were higher than those using SI-Pd/SnO 2 , even though the Pd loading amount of SI-Pd/SnO 2 was slightly larger than that of CP-Pd/SnO 2 . In addition, Pd/SnO 2 prepared via the CP method with a thinner sensing layer showed a higher sensor response and greater stability to humidity changes at 300 °C, even though the humidity change influenced the CO response at 250 and 350 °C. Thus, the overall design of the surface Pd, including size, dispersity, and oxidation state, and the sensor fabrication, that is, the thickness of the sensing layer, offer a high-performance semiconductor-type CO gas sensor with a wide range of humidity resistance.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • perovskite solar cells
  • drug delivery
  • nitric oxide
  • mass spectrometry
  • living cells
  • fluorescent probe