Login / Signup

Locating causal hubs of memory consolidation in spontaneous brain network in male mice.

Zengmin LiDilsher AthwalHsu-Lei LeePankaj SahPatricio OpazoKai-Hsiang Chuang
Published in: Nature communications (2023)
Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.
Keyphrases
  • resting state
  • functional connectivity
  • working memory
  • white matter
  • cerebral ischemia
  • physical activity
  • network analysis
  • multiple sclerosis
  • depressive symptoms
  • neural network