Mapping urban greenspace use from mobile phone GPS data.
Meghann MearsPaul BrindleyPaul BarrowsMiles RichardsonRavi MaheswaranPublished in: PloS one (2021)
Urban greenspace is a valuable component of the urban form that has the potential to improve the health and well-being of residents. Most quantitative studies of relationships between health and greenspace to date have investigated associations only with what greenspace exists in the local environment (i.e. provision of greenspace), rather than to what extent it is used. This is due to the difficulty of obtaining usage data in large amounts. In recent years, GPS functionality integrated into mobile phones has provided a potential solution to this problem by making it possible to track which parts of the environment people experience in their day-to-day lives. In this paper, we demonstrate a method to derive cleaned, trip-level information from raw GPS data collected by a mobile phone app, then use this data to investigate the characteristics of trips to urban greenspace by residents of the city of Sheffield, UK. We find that local users of the app spend an average of an hour per week visiting greenspaces, including around seven trips per week and covering a total distance of just over 2.5 km. This may be enough to provide health benefits, but is insufficient to provide maximal benefits. Trip characteristics vary with user demographics: ethnic minority users and users from more socioeconomically deprived areas tend to make shorter trips than White users and those from less deprived areas, while users aged 34 years and over make longer trips than younger users. Women, on average, make more frequent trips than men, as do those who spent more time outside as a child. Our results suggest that most day-to-day greenspace visits are incidental, i.e. travelling through rather than to greenspace, and highlight the importance of including social and cultural factors when investigating who uses and who benefits from urban greenspace.
Keyphrases
- mental health
- healthcare
- electronic health record
- public health
- big data
- health information
- high resolution
- type diabetes
- polycystic ovary syndrome
- mass spectrometry
- metabolic syndrome
- palliative care
- insulin resistance
- pregnant women
- resistance training
- data analysis
- high intensity
- high density
- single molecule
- placebo controlled