Aggregation of the Dipeptide Leu-Gly in Alcohol-Water Binary Solvents Elucidated from the Solvation Structure for Each Moiety.
Takahiro ToYusuke SakamotoKoichiro SadakaneMasaru MatsugamiToshiyuki TakamukuPublished in: The journal of physical chemistry. B (2021)
The aggregation of a dipeptide, l-leucine-glycine (Leu-Gly), at 100 mmol dm-3 has been observed in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)-water and 2-propanol (2-PrOH)-water solvents at various alcohol mole fractions, xA, using the dynamic light scattering technique and molecular dynamics (MD) simulations. Leu-Gly was dissolved into the HFIP solvents at the concentration over the entire xA range, while the dipeptide was not dissolved in the 2-PrOH solvents above xA = 0.6. Interestingly, the MD snapshots showed different shapes of Leu-Gly aggregates in the HFIP and 2-PrOH solvents. A linear-shaped aggregate forms in the former; in contrast, a spherical-shaped aggregate is generated in the latter. The solvation structure of each moiety of Leu-Gly in the HFIP and 2-PrOH solvents was observed using experimental and theoretical techniques,1H and 13C NMR, IR, and 19F-1H HOESY measurements and MD simulations. These results gave us the reasons for the different shapes of Leu-Gly aggregates in both solvents. In the HFIP solvents, most of the moieties of the dipeptide are easily solvated by HFIP. This induces the elongated structure of Leu-Gly, leading to the electrostatic interaction between the N- (NH3+ group) and C- (COO- group) terminals of dipeptide molecules. On the other hand, in the 2-PrOH solvents, water molecules that initially solvate the moieties of Leu-Gly, such as the N- and C-terminals and the peptide linkage, are not easily eliminated even as the xA is close to 0.6. The water molecules can bridge such moieties of Leu-Gly to form spherical-shaped aggregates. The diffusion coefficients of Leu-Gly in both alcohol-water binary solvents were experimentally determined by NMR DOSY to estimate the geometries of the aggregates in the solvents. The sizes of Leu-Gly aggregates obtained by DOSY for both solvent systems were consistent with those estimated from the MD snapshots.
Keyphrases
- ionic liquid
- molecular dynamics
- room temperature
- magnetic resonance
- high resolution
- molecular dynamics simulations
- type diabetes
- adipose tissue
- gene expression
- metabolic syndrome
- magnetic resonance imaging
- genome wide
- skeletal muscle
- hepatitis c virus
- men who have sex with men
- organic matter
- metal organic framework
- weight loss