Assessing the performance of the Tao-Mo semilocal density functional in the projector-augmented-wave method.
Subrata JanaAbhilash PatraPrasanjit SamalPublished in: The Journal of chemical physics (2018)
We assess the performance of the recently proposed Tao-Mo (TM) semilocal exchange-correlation functional [J. Tao and Y. Mo, Phys. Rev. Lett. 117, 073001 (2016)] using the projector-augmented-wave method with the plane wave basis set. The meta-generalized gradient approximation level semilocal functional constructed by Tao-Mo is an all-purpose exchange-correlation functional for the quantum chemistry and solid-state physics. The exchange of the TM functional is based on the density matrix expansion technique together with the slowly varying fourth order gradient expansion. The correlation functional corresponding to the exchange is based on the one-electron self-interaction-free Tao-Perdew-Staroverov-Scuseria functional. Our test includes solid-state lattice constants, bulk moduli, bandgaps, cohesive energies, magnetic moments and vacancy-formation energies of transition metals. It is observed that in the plane wave basis, the TM functional performs accurately in predicting all the solid state properties at the semilocal level.