Gas-Phase Deconstruction of UO22+: Mass Spectrometry Evidence for Generation of [OUVICH]+ by Collision-Induced Dissociation of [UVIO2(C≡CH)].
Michael J van StipdonkIrena J TatosianAnna C IacovinoAmanda R BubasLuke J MetzlerMary C ShermanArpad SomogyiPublished in: Journal of the American Society for Mass Spectrometry (2019)
Because of the high stability and inertness of the U=O bonds, activation and/or functionalization of UO22+ and UO2+ remain challenging tasks. We show here that collision-induced dissociation (CID) of the uranyl-propiolate cation, [UVIO2(O2C-C≡CH)]+, can be used to prepare [UVIO2(C≡CH)]+ in the gas phase by decarboxylation. Remarkably, CID of [UVIO2(C≡CH)]+ caused elimination of CO to create [OUVICH]+, thus providing a new example of a well-defined substitution of an "yl" oxo ligand of UVIO22+ in a unimolecular reaction. Relative energies for candidate structures based on density functional theory calculations suggest that the [OUVICH]+ ion is a uranium-methylidyne product, with a U≡C triple bond composed of one σ-bond with contributions from the U df and C sp hybrid orbitals, and two π-bonds with contributions from the U df and C p orbitals. Upon isolation, without imposed collisional activation, [OUVICH]+ appears to react spontaneously with O2 to produce [UVO2]+. Graphical Abstract .