Nuclear Delivery of Nanoparticle-Based Drug Delivery Systems by Nuclear Localization Signals.
Yuhan NieGuo FuYuxin LengPublished in: Cells (2023)
Nanomedicine 2.0 refers to the next generation of nanotechnology-based medical therapies and diagnostic tools. This field focuses on the development of more sophisticated and precise nanoparticles (NPs) for targeted drug delivery, imaging, and sensing. It has been established that the nuclear delivery of NP-loaded drugs can increase their therapeutic efficacy. To effectively direct the NPs to the nucleus, the attachment of nuclear localization signals (NLSs) to NPs has been employed in many applications. In this review, we will provide an overview of the structure of nuclear pore complexes (NPCs) and the classic nuclear import mechanism. Additionally, we will explore various nanoparticles, including their synthesis, functionalization, drug loading and release mechanisms, nuclear targeting strategies, and potential applications. Finally, we will highlight the challenges associated with developing nucleus-targeted nanoparticle-based drug delivery systems (NDDSs) and provide insights into the future of NDDSs.