Neuroprotective Effects of Carbonic Anhydrase Inhibition and Cyclic Adenosine Monophosphate Activation in Mouse Model of Transient Global Cerebral Ischemia and Reperfusion.
Manish KumarKomalpreet KaurThakur Gurjeet SinghPublished in: Neuromolecular medicine (2022)
Cerebral ischemia is the primary basis of stroke, both sharing common pathogenic origins leading to irreversible brain damage if blood supply is not restored promptly. Existing evidence indicates that carbonic anhydrase (CA) inhibitors (CAIs) may impart therapeutic benefits against ischemia-reperfusion (I/R) pathology via the adenylyl cyclase-cyclic adenosine monophosphate (cAMP) pathway. We hypothesize that CAI and cAMP activation may enhance the therapeutic outcome against I/R conditions. In this investigation, the potential of dichlorphenamide (CAI) and the role of cAMP against ischemia-reperfusion injury were evaluated using a transient global cerebral I/R (tGCI/R) model. Swiss albino mice were subjected to bilateral common carotid artery occlusion (BCCAo) for 20 min and reperfusion (R) or sham surgery on day 1. Dichlorphenamide (DCPA, 20 mg/kg) and/or forskolin (cAMP agonist, 3 mg/kg) was administered intraperitoneally (i.p.) after BCCAo/R for 14 days. Results showed that tGCI/R impaired neurocognitive functions and lowered brain levels of cAMP and protein kinase A (PKA) that were ameliorated by DCPA and/or forskolin (FSK). DCPA and/or FSK attenuated tGCI/R-induced brain edema, blood-brain barrier dysfunction, oxidative-nitrosative stress, pro-inflammatory cytokines, acetylcholinesterase activity, cell death, and neurotransmitter imbalance (e.g., glutamate, γ-aminobutyric acid). The study showed that DCPA improved neurological and biochemical parameters against tGCI/R injury via cAMP-PKA-mediated activation of protective mechanisms. However, DCPA and FSK in combination showed much enhanced therapeutic outcomes against tGCI/R. Therefore, CA and cAMP present novel targets that may retard the progress of a transient ischemic attack to a full-blown stroke.
Keyphrases
- cerebral ischemia
- protein kinase
- blood brain barrier
- subarachnoid hemorrhage
- brain injury
- binding protein
- cell death
- ischemia reperfusion injury
- oxidative stress
- mouse model
- minimally invasive
- healthcare
- heart failure
- signaling pathway
- bipolar disorder
- type diabetes
- white matter
- adipose tissue
- metabolic syndrome
- high glucose
- pi k akt
- acute coronary syndrome
- coronary artery disease
- coronary artery bypass
- acute myocardial infarction
- cell cycle arrest
- cerebral blood flow