Login / Signup

Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis.

Yasong ZhaoJiawei WanHuiying YaoLijuan ZhangKaifeng LinLei WangNailiang YangDaobin LiuLi SongJia ZhuLin GuLei LiuHuijun ZhaoYuliang LiDan Wang
Published in: Nature chemistry (2018)
The oxygen reduction reaction (ORR) is a fundamental reaction for energy storage and conversion. It has mainly relied on platinum-based electrocatalysts, but the chemical doping of carbon-based materials has proven to be a promising strategy for preparing metal-free alternatives. Nitrogen doping in particular provides a diverse range of nitrogen forms. Here, we introduce a new form of nitrogen doping moieties -sp-hybridized nitrogen (sp-N) atoms into chemically defined sites of ultrathin graphdiyne, through pericyclic replacement of the acetylene groups. The as-prepared sp-N-doped graphdiyne catalyst exhibits overall good ORR performance, in particular with regards to peak potential, half-wave potential and current density. Under alkaline conditions it was comparable to commercial Pt/C, and showed more rapid kinetics. And although its performances are a bit lower than those of Pt/C in acidic media they surpass those of other metal-free materials. Taken together, experimental data and density functional theory calculations suggest that the high catalytic activity originates from the sp-N dopant, which facilitates O2 adsorption and electron transfer on the surface of the catalyst. This incorporation of chemically defined sp-N atoms provides a new synthetic route to high-performance carbon-based and other metal-free catalysts.
Keyphrases