Login / Signup

Mechanical and Durability Characterization of Hybrid Recycled Aggregate Concrete.

Rashid HameedMuhammad TahirSafeer AbbasHaseeb Ullah SheikhSyed Minhaj Saleem KazmiMuhammad Junaid Munir
Published in: Materials (Basel, Switzerland) (2024)
The recycling of construction and demolition waste (CDW) for the extraction of recycled concrete aggregates (RCAs) to be used to produce recycled aggregate concrete (RAC) is widely acknowledged internationally. However, CDW not only contains concrete debris but may also contain burnt clay bricks. The recycling of such CDW without the segregation of different components would result in recycled aggregates having different proportions of concrete and brick aggregates. The utilization of these aggregates in concrete requires a detailed investigation of their mechanical and durability properties. In this regard, the present study focused on investigating the mechanical and durability properties of hybrid recycled aggregate concrete (HRAC) made by the 100% replacing of natural aggregates with recycled brick (RBAs) and RCA in hybrid form. The partial replacement of cement with fly ash was also considered to reduce the corban footprint of concrete. An extensive experimental program was designed and carried out in two phases. In the first phase, a total of 48 concrete mixes containing coarse RBA and RCA in mono and hybrid forms were prepared and tested for their compressive strength. The test results indicated that the compressive strength of HRAC is greatly affected by the proportion of coarse RBA and RCA. In the second phase, based on the results of the first phase, eight concrete mixes with the most critical proportions of RBA and RCA in hybrid form were selected to evaluate their mechanical and durability performance. In addition, four mixes with natural aggregates were also prepared for comparison purposes. To evaluate the mechanical properties of the concrete mixes, compressive strength and modulus of rupture (MOR) tests were performed, while for the evaluation of durability properties, water absorption and behavior after exposure to aggressive conditions of acidic and brine solutions were studied. The results revealed that a 20% replacement of cement with fly ash resulted in acceptable mechanical and durability properties of HRAC intended to be used for making concrete bricks or pavers.
Keyphrases
  • molecular dynamics simulations
  • molecular dynamics
  • risk assessment
  • quality improvement
  • clinical evaluation
  • high density