Login / Signup

Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals.

Gwendoline DelepierreHanna TraegerJozef AdamcikEmily D CranstonChristoph WederJustin O Zoppe
Published in: Biomacromolecules (2021)
The hydrophilic polymer poly[2-(2-(2-methoxy ethoxy)ethoxy)ethylacrylate] (POEG3A) was grafted onto the reducing end-groups (REGs) of cellulose nanocrystal (CNC) allomorphs, and their liquid crystalline properties were investigated. The REGs on CNCs extracted from cellulose I (CNC-I) are exclusively located at one end of the crystallite, whereas CNCs extracted from cellulose II (CNC-II) feature REGs at both ends of the crystallite, so that grafting from the REGs affords asymmetrically and symmetrically decorated CNCs, respectively. To confirm the REG modification, several complementary analytical techniques were applied. The grafting of POEG3A onto the CNC REGs was evidenced by Fourier transform infrared spectroscopy, atomic force microscopy, and the coil-globule conformational transition of this polymer above 60 °C, i.e., its lower critical solution temperature. Furthermore, we investigated the self-assembly of end-tethered CNC-hybrids into chiral nematic liquid crystalline phases. Above a critical concentration, both end-grafted CNC allomorphs form chiral nematic tactoids. The introduction of POEG3A to CNC-I does not disturb the surface of the CNCs along the rods, allowing the modified CNCs to approach each other and form helicoidal textures. End-grafted CNC-II formed chiral nematic tactoids with a pitch observable by polarized optical microscopy. This is likely due to their increase in hydrodynamic radius or the introduced steric stabilization of the end-grafted polymer.
Keyphrases