Login / Signup

Intramolecular Enhancement of a Zirconium-Based Metal-Organic Framework for Coordination-Induced Electrochemiluminescence Bleomycin Analysis.

Zhuangzhuang RuYue JiaYu DuYujie HanNuo ZhangXiang RenQin Wei
Published in: Analytical chemistry (2023)
It is significantly vital to develop a convenient assay method in clinical treatment due to an atypically low abundance (∼5 μM) of bleomycin (BLM) used in clinics. Herein, an electrochemiluminescence (ECL) biosensor using a zirconium-based metal-organic frameworks (Zr-MOFs) as an intramolecular coordination-induced electrochemiluminescence (CIECL) emitter was proposed for sensitive detection of BLM. Zr-MOFs were synthesized using Zr(IV) as metal ions and 4,4',4″-nitrilotribenzoic acid (H 3 NTB) as ligands for the first time. The H 3 NTB ligand not only acts as coordination units bonding with Zr(IV) but functions as a coreactant to enhance ECL efficiency rooted in its tertiary nitrogen atoms. Specifically, a long guanine-rich (G-rich) single-stranded DNA (ssDNA) was released by the target-BLM-controlled DNA machine that could perform π-π stacking with another G-quadruplex, ssDNA-rhodamine B (S-RB), by shearing DNA's fixed sites 5'-GC-3' and the auxiliary role of exonuclease III (Exo III). Finally, due to the quenching effect of rhodamine B, a negative correlation trend was obtained between ECL intensity and BLM concentration in the range from 5.0 nM to 50 μM and the limit of detection was 0.50 nM. We believe that it is a promising approach to guide the preparation of CIECL-based functional materials and establishment of analytical methods.
Keyphrases