Login / Signup

The mitochondrial fission protein DRP1 influences memory CD8+ T cell formation and function.

Marissa G StevensFrank M MasonTimothy N J Bullock
Published in: Journal of leukocyte biology (2023)
Pharmacological methods for promoting mitochondrial elongation suggest that effector T cells can be altered to support a memory T cell-like metabolic state. Such mitochondrial elongation approaches may enhance the development of immunological memory. Therefore, we hypothesized that deletion of the mitochondrial fission protein, DRP1, would lead to mitochondrial elongation and generate a large memory T cell population, an approach that could be exploited to enhance vaccination protocols. We find that, as expected, while deletion of DRP1 from T cells in dLckCre x Drp1flfl does compromise the magnitude and functionality of primary effector CD8+ T cells, a disproportionately large pool of memory CD8+ T cells does form. In contrast to primary effector CD8+ T cells, DRP1-deficient memory dLckCre x Drp1flfl CD8+ T cells mount a secondary response comparable to control memory T cells with respect to kinetics, magnitude, and effector capabilities. Interestingly, the relative propensity to form memory cells in the absence of DRP1 was neither associated with differentiation toward more memory precursor CD8+ T cells nor decreased cellular death of effector T cells. Instead, the tendency to form memory CD8+ T cells in the absence of DRP1 is associated with decreased TCR expression. Remarkably, in a competitive environment with DRP1-replete CD8+ T cells, the absence of DRP1 from CD8+ T cells compromised the generation of primary, memory and secondary responses, indicating that approaches targeting DRP1 need to be carefully tailored.
Keyphrases
  • working memory
  • oxidative stress
  • regulatory t cells
  • dendritic cells
  • magnetic resonance
  • magnetic resonance imaging
  • cell death
  • computed tomography
  • cell proliferation
  • smoking cessation
  • cell wall