Login / Signup

A Pilot Study to Assess the Performance of Phase-Sensitive Breast Tomosynthesis.

Laurie L FajardoStephen L HillisBin ZhengMolly Donovan WongMuhammad U GhaniFarid H OmoumiYuhua LiPeter JenkinsMichael E PetersonXizeng WuHong Liu
Published in: Radiology (2022)
Background A new modality, phase-sensitive breast tomosynthesis (PBT), may have similar diagnostic performance to conventional breast tomosynthesis but with a reduced radiation dose. Purpose To perform a pilot study of the performance of a novel PBT system compared with conventional digital breast tomosynthesis (DBT) in patients undergoing additional diagnostic imaging workup for breast lesions. Materials and Methods In a prospective study from June 2020 to March 2021, participants with suspicious breast lesions detected at screening DBT or MRI were recruited for additional PBT imaging before additional diagnostic workup or biopsy. In this pilot study, nine radiologists independently evaluated image quality and assessed the likelihood of lesion malignancy by retrospectively evaluating DBT and PBT images in two separate reading sessions. Image quality was rated subjectively using a Likert scale from 1 to 5. Areas under the receiver operating characteristic curve (AUCs) were used to compare the lesion classification (malignant vs benign) performance of the radiologists. Results Images in 50 patients (mean age, 56 years ± 12 [SD]; 49 women) with 52 evaluable lesions (28 malignant) were assessed. For image appearance and general feature visibility, DBT images had a higher total mean image quality score (3.8) than PBT images (2.9), with P < .002 for each comparison. For classification of lesions as benign or malignant, the AUCs were 0.74 for both PBT and DBT. PBT images were acquired at a 24% mean radiation dose reduction (mean, 1.78 mGy vs 2.34 mGy for DBT; P < .001). Conclusion The phase-sensitive breast tomosynthesis system had a 24% lower mean radiation dose compared with digital breast tomosynthesis, although with lower image quality. Diagnostic performance of the system remains to be determined in larger studies. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gao and Moy in this issue.
Keyphrases