Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action.
Md AshrafuzzamanZahidul HaqueBasharat AliBoby MathewPeng YuFrank HochholdingerJoao Braga de Abreu NetoMax R McGillenHans-Jürgen EnsikatWilliam J ManningMichael FreiPublished in: Plant, cell & environment (2018)
Monitoring of ozone damage to crops plays an increasingly important role for the food security of many developing countries. Ethylenediurea (EDU) could be a tool to assess ozone damage to vegetation on field scale, but its physiological mode of action remains unclear. This study investigated mechanisms underlying the ozone-protection effect of EDU in controlled chamber experiments. Ozone sensitive and tolerant rice genotypes were exposed to ozone (108 ppb, 7 hr day-1 ) and control conditions. EDU alleviated ozone effects on plant morphology, foliar symptoms, lipid peroxidation, and photosynthetic parameters in sensitive genotypes. Transcriptome profiling by RNA sequencing revealed that thousands of genes responded to ozone in a sensitive variety, but almost none responded to EDU. Significant interactions between ozone and EDU application occurred mostly in ozone responsive genes, in which up-regulation was mitigated by EDU application. Further experiments documented ozone degrading properties of EDU, as well as EDU deposits on leaf surfaces possibly related to surface protection. EDU application did not mitigate the reaction of plants to other abiotic stresses, including iron toxicity, zinc deficiency, and salinity. This study provided evidence that EDU is a surface protectant that specifically mitigates ozone stress without interfering directly with the plants' stress response systems.
Keyphrases
- particulate matter
- hydrogen peroxide
- gene expression
- nitric oxide
- escherichia coli
- genome wide
- mass spectrometry
- physical activity
- cystic fibrosis
- dna methylation
- pseudomonas aeruginosa
- staphylococcus aureus
- high resolution
- rna seq
- radiation induced
- smoking cessation
- genome wide identification
- biofilm formation
- electron transfer