Login / Signup

Fluorescence and Rotational Dynamics of a Crystalline Molecular Rotor Featuring an Aggregation-Induced Emission Fluorophore.

Morgan E HoweMiguel A Garcia-Garibay
Published in: The Journal of organic chemistry (2019)
Recent studies have shown that "crystal fluidity" in the form of fast conformational motions is critical for large-amplitude rotational motion in crystals. To explore this concept, we designed a crystalline assembly featuring two diethynylbenzene (DEB) molecular rotators linked to tetraphenylethylene (TPE), a fluorophore known to emit with intensities that depend on the rigidity of the medium. We envisioned that an increase in crystal fluidity as a function of increasing temperature would facilitate rotational motion of the DEB while diminishing the fluorescence intensity of the TPE. The aggregation-induced emission of the TPE moiety was confirmed when its fluorescence intensity increased by the addition of water to a THF solution. While bulk solids showed a relatively strong TPE emission with a lifetime of 4 ± 1 ns, no significant changes were observed between measurements carried out from 77 to 298 K, indicating that the crystal environment has limited motion within the excited-state lifetime. This conclusion was confirmed by the quadrupolar echo 2H NMR line-shape analysis of a deuterium-labeled sample between 198 and 298 K, which revealed rotational correlation times in the microsecond regime, suggesting that rotational fluidity is 3 orders of magnitude too slow to affect fluorescence emission.
Keyphrases