Login / Signup

Light-Stabilized Dynamic Materials.

Hannes A HouckEva BlascoFilip E Du PrezShivshankar R Mane
Published in: Journal of the American Chemical Society (2019)
The light-responsive adaptation of polymer materials typically requires different wavelengths or additional heat to induce reversible covalent bond formation and dissociation. Here, we bypass the use of invasive triggers by introducing light-stabilized dynamic materials that can undergo a repeatable change in topology from a covalently cross-linked material into a liquid polymer formulation by switching one visible light source on-and-off without the need for any additional triggers. Specifically, we exploit the photo-Diels-Alder reaction of triazolinediones with naphthalenes as a dynamic covalent cross-linking platform that enables green light-induced network formation, while the cross-linked material collapses through spontaneous cycloreversion upon standing in the dark at ambient temperature. Importantly, the covalent cross-links remain stabilized for as long as visible light is present, thereby retaining the material's structural integrity. This enables their potential use in an array of light-directed applications whereby network properties such as stiffness can be tuned by the mildest trigger of all: darkness.
Keyphrases
  • visible light
  • high throughput
  • air pollution
  • drug delivery
  • particulate matter
  • cancer therapy