Instantaneous Marcus theory for photoinduced charge transfer dynamics in multistate harmonic model systems.
Zengkui LiuXiang SunPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2024)
Modeling the dynamics of photoinduced charge transfer (CT) in condensed phases presents challenges due to intricate many-body interactions and the quantum nature of electronic transitions. While traditional Marcus theory is a robust method for calculating CT rate constants between electronic states, it cannot account for the nonequilibrium effects arising from the initial nuclear state preparation. In this study, we employ the instantaneous Marcus theory (IMT) to simulate photoinduced CT dynamics. IMT incorporates nonequilibrium structural relaxation following a vertical photoexcitation from the equilibrated ground state, yielding a time-dependent rate coefficient. The multistate harmonic (MSH) model Hamiltonian characterizes an organic photovoltaic carotenoid-porphyrin-fullerene triad dissolved in explicit tetrahydrofuran solvent, constructed by mapping all-atom inputs from molecular dynamics simulations. Our calculations reveal that the electronic population dynamics of the MSH models obtained with IMT agree with the more accurate quantum-mechanical nonequilibrium Fermi's golden rule. This alignment suggests that IMT provides a practical approach to understanding nonadiabatic CT dynamics in condensed-phase systems.
Keyphrases