Login / Signup

DNA methylation fine-tunes pro-and anti-inflammatory signalling pathways in inactive ulcerative colitis tissue biopsies.

Wei MengChristopher G FentonKay-Martin JohnsenHagar TamanJon FlorholmenRuth H Paulssen
Published in: Scientific reports (2024)
DNA methylation has been implied to play a role in the immune dysfunction associated with inflammatory bowel disease (IBD) and the disease development of ulcerative colitis (UC). Changes of the DNA methylation and correlated gene expression in patient samples with inactive UC might reveal possible regulatory features important for further treatment options for UC. Targeted bisulfite sequencing and whole transcriptome sequencing were performed on mucosal biopsies from patients with active UC (UC, n = 14), inactive UC (RM, n = 20), and non-IBD patients which served as controls (NN, n = 11). The differentially methylated regions (DMRs) were identified by DMRseq. Correlation analysis was performed between DMRs and their nearest differentially expressed genes (DEGs). Principal component analysis (PCA) was performed based on correlated DMR regulated genes. DMR regulated genes then were functional annotated. Cell-type deconvolutions were performed based on methylation levels. The comparisons revealed a total of 38 methylation-regulated genes in inactive UC that are potentially regulated by DMRs (correlation p value < 0.1). Several methylation-regulated genes could be identified in inactive UC participating in IL-10 and cytokine signalling pathways such as IL1B and STAT3. DNA methylation events in inactive UC seem to be fine-tuned by the balancing pro- and anti- inflammatory pathways to maintain a prevailed healing process to restore dynamic epithelium homeostasis.
Keyphrases