Control of Host-Matrix Morphology Enables Efficient Deep Blue Organic Light Emitting Devices.
Haonan ZhaoJongchan KimKan DingMina JungYongxi LiHarald AdeJun Yeob LeeStephen R ForrestPublished in: Advanced materials (Deerfield Beach, Fla.) (2023)
We demonstrate that mixing a sterically bulky, electron-transporting host material into a conventional single host-guest emissive layer suppresses phase separation of the host matrix while increasing the efficiency and operational lifetime of deep blue phosphorescent organic light emitting diodes (PHOLEDs) with chromaticity coordinates of (0.14, 0.15). The bulky host enables homogenous mixing of the molecules comprising the emissive layer while suppressing single host aggregation; a significant loss channel of nonradiative recombination. By controlling the amorphous phase of the host-matrix morphology, the mixed-host device achieves a significant reduction in non-radiative exciton decay, resulting in 120 ± 6% increase in external quantum efficiency relative to an analogous, single-host device. In contrast to single host PHOLEDs where electrons are transported by the host and holes by the dopants, both charge carriers are conducted by the mixed host, reducing the probability of exciton annihilation, thereby doubling of the deep blue PHOLED operational lifetime. Our findings demonstrate that the host matrix morphology affects almost every aspect of PHOLED performance. This article is protected by copyright. All rights reserved.