Magnetic resonance brain volumetry biomarkers of CLN2 Batten disease identified with miniswine model.
Kevin KnoernschildHans J JohnsonKimberly E SchroederVicki J SwierKatherine A WhiteTakashi S SatoChristopher S RogersJill M WeimerJessica C SierenPublished in: Scientific reports (2023)
Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease (Batten disease) is a rare pediatric disease, with symptom development leading to clinical diagnosis. Early diagnosis and effective tracking of disease progression are required for treatment. We hypothesize that brain volumetry is valuable in identifying CLN2 disease at an early stage and tracking disease progression in a genetically modified miniswine model. CLN2 R208X/R208X miniswine and wild type controls were evaluated at 12- and 17-months of age, correlating to early and late stages of disease progression. Magnetic resonance imaging (MRI) T1- and T2-weighted data were acquired. Total intercranial, gray matter, cerebrospinal fluid, white matter, caudate, putamen, and ventricle volumes were calculated and expressed as proportions of the intracranial volume. The brain regions were compared between timepoints and cohorts using Gardner-Altman plots, mean differences, and confidence intervals. At an early stage of disease, the total intracranial volume (- 9.06 cm 3 ), gray matter (- 4.37% 95 CI - 7.41; - 1.83), caudate (- 0.16%, 95 CI - 0.24; - 0.08) and putamen (- 0.11% 95 CI - 0.23; - 0.02) were all notably smaller in CLN2 R208X/R208X miniswines versus WT, while cerebrospinal fluid was larger (+ 3.42%, 95 CI 2.54; 6.18). As the disease progressed to a later stage, the difference between the gray matter (- 8.27%, 95 CI - 10.1; - 5.56) and cerebrospinal fluid (+ 6.88%, 95 CI 4.31; 8.51) continued to become more pronounced, while others remained stable. MRI brain volumetry in this miniswine model of CLN2 disease is sensitive to early disease detection and longitudinal change monitoring, providing a valuable tool for pre-clinical treatment development and evaluation.
Keyphrases
- early stage
- cerebrospinal fluid
- magnetic resonance imaging
- magnetic resonance
- white matter
- computed tomography
- squamous cell carcinoma
- multiple sclerosis
- heart failure
- lymph node
- contrast enhanced
- radiation therapy
- coronary artery
- pulmonary arterial hypertension
- neoadjuvant chemotherapy
- brain injury
- resting state
- mitral valve
- sentinel lymph node
- subarachnoid hemorrhage
- loop mediated isothermal amplification
- data analysis
- optic nerve
- locally advanced