Login / Signup

Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network.

Xuebin LiuXianwen LiangZhiqiang LinZuomin LeiYaoxu XiongYou-Gen HuPeng-Li ZhuRong SunChing-Ping Wong
Published in: ACS applied materials & interfaces (2020)
Highly sensitive and stretchable strain sensors have attracted considerable attention due to their promising applications in human motion detection, soft robot, wearable electronics, etc. However, there is still a trade-off between high sensitivity and high stretchability. Here, we reported a stretchable strain sensor by sandwiching reduced graphene oxide (RGO)-coated polystyrene microspheres (PS@RGO) and silver nanowires (AgNWs) conductive hybrids in an elastic polydimethylsiloxane (PDMS) matrix. Due to the synergistic effect of PS@RGO and AgNWs, the PDMS/PS@RGO/AgNWs/PDMS sensor exhibits a high initial electrical conductivity of 8791 S m-1, wide working range of 0-230%, large gauge factor of 11 at 0-60% of strain and 47 at 100%-230% of strain with a high linear coefficient of 0.9594 and 0.9947, respectively, low limit of detection (LOD) of 1% of strain, and excellent long-term stability over 1000 stretching/releasing cycles under 50% strain. Furthermore, the strain sensor has been demonstrated in detecting human body motion and fan rotation with high stretchability and stability, showing potential application in intelligent robot and Internet of things.
Keyphrases