Electronic and Steric Tuning of an Atropisomeric Disulfoxide Ligand Motif and Its Use in the Rh(I)-Catalyzed Addition Reactions of Boronic Acids to a Wide Range of Acceptors.
Guang-Zhen ZhaoDaven FosterGellért SiposPengchao GaoBrian W SkeltonAlexandre N SobolevReto DortaPublished in: The Journal of organic chemistry (2018)
A novel chiral disulfoxide ligand pair bearing fluorine atoms at the 6 and 6' position of its atropisomeric backbone, ( M, S, S)- and ( P, S, S)- p-Tol-6F-BIPHESO, was synthesized. Complexation to a rhodium(I) precursor gave rise to μ-Cl- and μ-OH-bridged rhodium dimer complexes incorporating the new ( M, S, S)- p-Tol-6F-BIPHESO ligand, while its sibling ( P, S, S)- p-Tol-6F-BIPHESO was not complexed efficiently to the rhodium precursor. The performance of this disulfoxide ligand [( M, S, S)- p-Tol-6F-BIPHESO] in catalysis was tested in both 1,4- and 1,2-addition reactions of arylboronic acids. We show that addition to both cyclic and acyclic enones as well as N-tosylarylimines proceeds with high yields and high enantioselectivities to give the corresponding products. The synthesis of enantiomerically pure p-Tol-6F-BIPHESO is straightforward and inexpensive which, together with the high catalytic performance and wide substrate scope for these addition reactions, makes it a very attractive alternative to more classical chiral ligand entities.
Keyphrases