Login / Signup

Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications.

Maoshuai HeShuchen ZhangJin Zhang
Published in: Chemical reviews (2020)
Single-walled carbon nanotubes (SWNTs) emerge as a promising material to advance carbon nanoelectronics. However, synthesizing or assembling pure metallic/semiconducting SWNTs required for interconnects/integrated circuits, respectively, by a conventional chemical vapor deposition method or by an assembly technique remains challenging. Recent studies have shown significant scientific breakthroughs in controlled SWNT synthesis/assembly and applications in scaled field effect transistors, which are a critical component in functional nanodevices, thereby rendering the horizontal SWNT array an important candidate for innovating nanotechnology. This review provides a comprehensive analysis of the controlled synthesis, surface assembly, characterization techniques, and potential applications of horizontally aligned SWNT arrays. This review begins with the discussion of synthesis of horizontally aligned SWNTs with regulated direction, density, structure, and theoretical models applied to understand the growth results. Several traditional procedures applied for assembling SWNTs on target surface are also briefly discussed. It then discusses the techniques adopted to characterize SWNTs, ranging from electron/probe microscopy to various optical spectroscopy methods. Prototype applications based on the horizontally aligned SWNTs, such as interconnects, field effect transistors, integrated circuits, and even computers, are subsequently described. Finally, this review concludes with challenges and a brief outlook of the future development in this research field.
Keyphrases
  • high resolution
  • carbon nanotubes
  • walled carbon nanotubes
  • single molecule
  • high throughput
  • high density
  • high speed
  • quantum dots
  • current status
  • climate change
  • label free