Login / Signup

UV-Vis-NIR Full-Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections and Deep-Red Fluorescence at Nucleoli and In Vivo.

Lei JiangHaizhen DingMingsheng XuXiaolong HuShengli LiMingzhu ZhangQiong ZhangQiyang WangSiyu LuYupeng TianHong Bi
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Carbon dots (CDs), with excellent optical property and cytocompatibility, are an ideal class of nanomaterials applied in the field of biomedicine. However, the weak response of CDs in the near-infrared (NIR) region impedes their practical applications. Here, UV-vis-NIR full-range responsive fluorine and nitrogen doped CDs (N-CDs-F) are designed and synthesized that own a favorable donor-π-acceptor (D-π-A) configuration and exhibit excellent two-photon (λex = 1060 nm), three-photon (λex = 1600 nm), and four-photon (λex = 2000 nm) excitation upconversion fluorescence. D-π-A-conjugated CDs prepared by solvothermal synthesis under the assistance of ammonia fluoride are reported and are endowed with larger multiphoton absorption (MPA) cross sections (3PA: 9.55 × 10-80 cm6 s2 photon-2 , 4PA: 6.32 × 10-80 cm8 s3 photon-3 ) than conventional organic compounds. Furthermore, the N-CDs-F show bright deep-red to NIR fluorescence both in vitro and in vivo, and can even stain the nucleoli of tumor cells. A plausible mechanism is proposed on the basis of the strong inter-dot and intra-dot hydrogen bonds through NH···F that can facilitate the expanding of conjugated sp2 domains, and thus not only result in lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy level but also larger MPA cross sections than those of undoped CDs.
Keyphrases