Login / Signup

Diverse RNA viruses discovered in multiple seagrass species.

Jordan E RedeMya BreitbartCarolyn LundquistKeizo NagasakiIan Hewson
Published in: PloS one (2024)
Seagrasses are marine angiosperms that form highly productive and diverse ecosystems. These ecosystems, however, are declining worldwide. Plant-associated microbes affect critical functions like nutrient uptake and pathogen resistance, which has led to an interest in the seagrass microbiome. However, despite their significant role in plant ecology, viruses have only recently garnered attention in seagrass species. In this study, we produced original data and mined publicly available transcriptomes to advance our understanding of RNA viral diversity in Zostera marina, Zostera muelleri, Zostera japonica, and Cymodocea nodosa. In Z. marina, we present evidence for additional Zostera marina amalgavirus 1 and 2 genotypes, and a complete genome for an alphaendornavirus previously evidenced by an RNA-dependent RNA polymerase gene fragment. In Z. muelleri, we present evidence for a second complete alphaendornavirus and near complete furovirus. Both are novel, and, to the best of our knowledge, this marks the first report of a furovirus infection naturally occurring outside of cereal grasses. In Z. japonica, we discovered genome fragments that belong to a novel strain of cucumber mosaic virus, a prolific pathogen that depends largely on aphid vectoring for host-to-host transmission. Lastly, in C. nodosa, we discovered two contigs that belong to a novel virus in the family Betaflexiviridae. These findings expand our knowledge of viral diversity in seagrasses and provide insight into seagrass viral ecology.
Keyphrases
  • sars cov
  • healthcare
  • climate change
  • genome wide
  • genetic diversity
  • nucleic acid
  • electronic health record
  • single cell
  • gene expression
  • dna methylation
  • big data
  • transcription factor