Login / Signup

Single-Layered MXene Nanosheets Doping TiO2 for Efficient and Stable Double Perovskite Solar Cells.

Zhenxing LiPing WangChang MaFemi IgbariYikun KangKai-Li WangWei-Yu SongChong DongYanjie LiJiasai YaoDong MengZhao-Kui WangYang Yang
Published in: Journal of the American Chemical Society (2021)
The inorganic lead-free Cs2AgBiBr6 double perovskite structure is the promising development direction in perovskite solar cells (PSCs) to solve the problem of the instability of the APbX3 structure and lead toxicity. However, the low short-circuit current and power conversion efficiency (PCE) caused by the low crystallization of Cs2AgBiBr6 greatly limit the optoelectronic application. Herein, we adopt a simple strategy to dope single-layered MXene nanosheets into titania (Ti3C2Tx@TiO2) as a multifunctional electron transport layer for stable and efficient Cs2AgBiBr6 double PSCs. The single-layered MXene nanosheets significantly improve the electrical conductivity and electron extraction rate of TiO2; meanwhile, the single-layered MXene nanosheets change the surface wettability of the electron transport layer and promote the crystallization of the Cs2AgBiBr6 double perovskite in solar cell devices. Therefore, the PCE went up by more than 40% to 2.81% compared to that of a TiO2 based device, and the hysteresis was greatly suppressed. Furthermore, the device based on Ti3C2Tx@TiO2 showed the long-term operating stability. After storing the device for 15 days under ambient air conditions, the PCE still remained a retention rate of 93% of the initial one. Our finding demonstrates the potential of Ti3C2Tx@TiO2 in electron transfer material of high-performance double PSCs.
Keyphrases