Login / Signup

Discrepancy between Proline and Homoproline in Chiral Recognition and Diastereomeric Photoreactivity with Iridium(III) Complexes.

Ming-Feng XiongHe-Long PengXue-Peng ZhangBao-Hui Ye
Published in: Inorganic chemistry (2021)
The chiral-recognition processes of homoproline (hpro) and [Ir(pq)2(MeCN)2](PF6) (pq is 2-phenylquinoline; MeCN is acetonitrile) are investigated, in favor of formation of the thermodynamically stable diastereomers Λ-[Ir(pq)2(d-hpro)] and Δ-[Ir(pq)2(l-hpro)]. Moreover, the diastereoselective photoreactions of Δ-[Ir(pq)2(d-hpro)] and Δ-[Ir(pq)2(l-hpro)] are reported in the presence of O2 at room temperature. Diastereomer Δ-[Ir(pq)2(l-hpro)] is dehydrogenatively oxidized into imino acid complex Δ-[Ir(pq)2(hpro-2H2)] (hpro-2H2 is 3,4,5,6-tetrahydropicalinate), while diastereomer Δ-[Ir(pq)2(d-hpro)] occurs by interligand C-N cross-coupling and dehydrogenative oxidation reactions, affording three products: Δ-[Ir(pq)(d-pqh)] [pqh is N-(2-phenylquinolin-8-yl)homoproline], Δ-[Ir(pq)2(hpro-2H2)], and Δ-[Ir(pq)2(d-hpro-2H6)] [hpro-2H6 is 2,3,4,5-tetrahydropicalinate]. The C-N cross-coupling and dehydrogenative oxidation reactions are competitive, and the dehydrogenative oxidation reactions are regioselective. By optimization of the photoreaction parameters such as the diastereomeric substrate, solvent, and temperature as well as base, each possible competitive product is selectively controlled. In addition, density functional theory calculations are performed to elucidate the distinctly chiral recognition between proline and hpro with an iridium(III) complex.
Keyphrases
  • density functional theory
  • room temperature
  • hydrogen peroxide
  • nitric oxide
  • high resolution
  • high speed
  • atomic force microscopy